ilyesusa ilyesusa
  • 02-07-2020
  • Mathematics
contestada

Find the coefficient of the x^4y^2 term in the expansion of (2x+y)^6

Respuesta :

Space
Space Space
  • 02-07-2020

Answer:

240

Step-by-step explanation:

When you factor it out, you get:

[tex]64x^6 + 192x^5y +240x^4y^2 + 160x^3y^3 + 60x^2y^4 +12xy^5 + y^6[/tex]

Answer Link

Otras preguntas

What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
find the circumference of a circle whose radius is 15.4cm
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})